4
Jul
2012

Why I’m not excited about the Higgs boson

A friend at work (@obviouscorp) asked me why the Higgs boson was such a big deal. And as nearly as I can tell, the answer is “It’s not.”

Now don’t get me wrong. I think the discovery of a particle we have been hunting down for 50 years is a big deal. But I’m still not excited.

Background

I happen to have a PhD in physics, but I left the field right after getting my degree almost 20 years ago. So I’m basically a layman at this point, but I do have a background in some of this stuff.

I’ve done a good amount of digging into articles, forums, etc., and I find that a lot of the information out there is confusing. This is my current understanding of what the Higgs actually is. It think it’s basically right, but there is a chance that I have some of it wrong. If anyone who is current on the research can help correct any misperceptions I have, that would be awesome.

Different kinds of mass

Roughly speaking, scientists are interested in the Higgs field because it helps explain where mass comes from. But the word “mass” can mean many things.

The term “inertial mass” is the idea of how hard it is to push something. If something is massive, you need to apply more force in order to move it.

The term “gravitational mass” is the idea of how strongly a piece of matter attracts other things with mass. If something is massive, it pulls you toward itself.

As it turns out, these two concepts of mass are identical. In other words, if something is twice as heavy in terms of “hard to push”, its gravity also pulls twice as hard.

The confusing molasses analogy

Many science writers talk about the Higgs field giving mass to particles by “slowing them down” like marbles traveling through molasses. This is obviously just a colorful metaphor, but I took this to mean that the Higgs field explained the concept of inertial mass, i.e., why massive things are hard to push.

If that were true, it would be super exciting, because it’s such a fundamental concept. But I couldn’t see how it could possibly be true, for a bunch of reasons.

As it turns out, that’s not what scientists are saying. To understand what scientists are actually saying, you have to know a little bit about our current view of the world of subatomic particles.

Mass, vs. other properties

As far as we know, the “stuff” in the world is made up of quarks and leptons. An electron is an example of a lepton. There are six leptons total (or 12, if you count anti-particles). There are also six kinds of quarks (or 12, if you count anti-quarks). Finally, there are four force mediating particles (e.g, photons, gluons, etc.).

All of these particles have properties, like “charge”. An electron has a -1 charge. An up quark has a +2/3 charge.

These properties tend to come in exact increments. For example, the spin of a particle can be 1/2, 1, -1/2, etc. Nothing in between.

Mass is different. The masses of particles have totally bizarre values. Photons have zero mass. Neutrinos (probably) have mass, but it is such a tiny, tiny amount of mass that we have trouble detecting their existence. Meanwhile, the top quark has as mass of 170GeV or so. That’s something like 100 billion times heavier than a neutrino.

So scientists look at that and say “why is mass so weird?”

Rest mass vs. energy

The masses of particles I referred to above is more properly called “rest mass”. We use that specific term because energy also counts toward “mass”. If an electron is at rest, it has .5 MeV of mass. But if it’s moving really fast, that electron has more mass because of the energy of its motion.

All kinds of energy contributes to mass. For example, let’s look at protons.

A proton is composed of two up quarks and a down quark. But if you add up the “rest mass” of two up quarks and a down quark, you end up with much, much less mass than the mass of a proton. That’s because 99% of the mass of a proton comes from the energy that binds all three quarks together. Weird, right? 99% of the mass is just energy. 1% comes from the rest mass of the stuff inside.

No more rest mass

Ok… with all that in mind, here’s my current understanding of what it means for the Higgs field to be the source of mass.

The Higgs field lets you replace the rest mass of particles with another energy term, which means that all particles are massless, and there is no such thing as “rest mass”. That makes our equations cleaner, and gets rid of a messy concept (rest mass).

That’s pretty fundamental, so I guess I understand why people are excited.

Why do you keep saying “Higgs field” instead of “Higgs boson”?

In the standard model, all fields are mediated by force-carrying particles. The electromagnetic force is mediated by photons, and the strong force is mediated by gluons. It’s kind of complicated, but the force and the particle are kind of the same thing.

When you talk about stuff that comes out of particle accelerators, you tend to talk about the particles (Higgs boson). When you talk about how they affect things in the world, you tend to talk about fields or forces (the Higgs field).

But it’s all the same thing.

Why I’m not excited

Ok. So we found something that looks like the Higgs boson, which gives more weight to this theory that the Higgs field is the source of the rest mass of fundamental particles.

We still have the question of why the masses of particles are so different from one another. Before, we said “we have no idea what mass is, and why the values are so weird.” Now, we say “rest mass comes from the Higgs field, and we have no idea why the coupling constants are so weird.” (coupling constant is just a fancy way of saying “how much each kind of particle is affected by the Higgs field”)

Now the normal answer to the question of why the coupling constants got to be the way they are is “spontaneous symmetry breaking”, which is a fancy way of saying “it happened a long time ago, and was basically random”.

I guess that’s progress, but it’s not super satisfying.

Another way to read the news is something like this: “Our model for how the universe works is still basically correct”.

I guess that’s news, but I would have been more excited by the opposite result.

18 Responses to “Why I’m not excited about the Higgs boson”

  1. Rich Rodecker

    Awesome writeup!

  2. Senectus

    What I find annoying is the lack of media attention on _all the other things_ the LHD is discovering.

  3. sho

    @Rich: Thanks!

    @Senectus: like what?

  4. Todd

    Hopefully they will do an episode of Big Bang Theory about this!

  5. Steve

    Really, Todd…?

  6. Yahya Hamed

    When I got interested in astronomy it was because some one like you made it easy for me to understand. Thank you for making me interested in the particle physics or what ever it’s called

  7. mikhailfranco

    I am also a lapsed physicist (I worked on LEP 20 years ago) and I am also not excited about the Higgs – yet. Firstly, until the properties have been nailed down experimentally, we have not constrained which of the many possible theoretical incantations is true. Secondly, unless the Higgs theory meshes nicely with General Relativity, we are blunting Occam’s razor by just proliferating more gratuitous explanations (also my objection to Inflation Theory and the so-called ‘inflaton’ field). It seems that the origin of mass, interactions of mass and energy, cosmic inflation and the nature of dark energy could all be explained by a suitable theory of quantum gravity that incorporates the mathematics of GR, Higgs mechanism, inflaton field, the cosmological constant and the structure of the vacuum. Perhaps this is an obvious dream, but I would go so far as to say that no interim explanation is very satisfying, when we really know that all these questions are interrelated, and are probably just different aspects of a single deeper theory.

    Mik

    P.S. I also find it worrying that amongst the Higgs media frenzy there is no investigation of how the Higgs fits with GR – surely it’s obvious they are two rival explanations for the same phenomena, yet nobody tries to explain how they could possibly fit together.

  8. sho

    @Mik: Yes, yes, yes! I completely agree with everything you wrote.

    The Higgs field does not (as far as I can tell) try to explain the *concept* of mass, and how it affects motion.

    Instead, the Higgs field explains why certain particles have a non-zero rest mass. When it comes to protons, 99% of the mass of a proton comes from the bound energy from the strong force, and 1% comes from the rest mass of the quarks inside. The Higgs field explains where that 1% comes from.

    The Higgs field is silent on how the mass it generates relates to GR in precisely the same way that the color field is silent on how the mass IT generates relates to GR (99% of the mass of the proton comes from color, remember?) .

    FWIW, I totally agree with you that the questions surrounding GR and quantum mechanics are the most interesting physics problem of our time. The Higgs just confuses matters (at least to my eye).

    QM and GR are so beautiful and bizarre and “right” within their own respective regimes that it is maddening that there appears to be no way to reconcile the two.

    Here’s your list of interesting “quantum gravity-ish” problems you talked about above:
    1) Higgs
    2) Inflation theory
    3) Dark energy / dark matter

    To which I’d add a few more:

    4) Holographic principle
    5) The measurement problem

    I know that (5) is usually handwaved away as not being important because “the math works out”, but my belief is that measurement (and wavefunction collapse) is a physical process, as opposed to a psychological process, and that it has to do with the interaction between large systems and small systems (via decoherence, for example).

    It’s not self-evident that measurement would be tied to gravity, but because measurement always involves large systems, it’s not impossible that gravity would play a role. (for an example of such a theory, see http://en.wikipedia.org/wiki/Penrose_interpretation)

  9. Rick

    Here is a good video explaining it for most people, figure if NASA likes it it should work for most! :)

    http://apod.nasa.gov/apod/ap120501.html

  10. sho

    @Rick: I love that video, and I’ve even passed it along to some friends.

    That having been said, I find that the video is misleading, precisely at the point where it starts to talk about mass.

    At 4:00 or so, he mentions that the Higgs is responsible for mass, and therefore gravity. That is precisely NOT what is being claimed by the quantum field theorists. Higgs says nothing about gravity.

    And then, he goes on to talk about how matter interacts with a field that “slows it down” to give it mass. That’s obviously just a colorful analogy, but I find that this particular analogy does more harm than good. it implies that ALL mass comes from interaction with this field, whereas, say, 99% of the mass of the proton is actually not described by the Higgs field at all!

  11. Gareth Field

    So, I didn’t graduate college, but I stumbled upon this and felt the need to contradict you for several reasons. I’ll be brief.

    1) The public should be excited about science.
    2) I got the impression that the big deal was that the discovery of the boson points towards a concrete in the mass-ness of particles, and that it opens up new avenues of research.
    3) You might have a doctoral degree, but that doesn’t excuse you from editing what you’ve written. Not that I’m going to do that to this comment, but it’s a comment, not an article.

    Chin up, mate.

  12. sho

    @Gareth: totally understand your first two points.

    Could you be more clear about the third?

    Thanks.

  13. Chris Saari

    So mass is a byproduct of interaction of particles in a Higgs field… so if at absolute zero things go entirely mass-less or close to it? This would also affect gravitational pull?

  14. Jim

    I was confused by this: “But the word ‘mass’ can mean many things…As it turns out, these two concepts of mass are identical.” I think you don’t mean to say that the concepts are identical, you go on to treat them as different concepts. What I think you meant to say was that the as it turns out, the two concepts pick out a single physical quantity. Or perhaps two quantities with equal values. But they’re still two concepts, otherwise how could you be more excited by an explanation of the one than the other?

  15. Sho

    @Chris: It’s actually the reverse. At very high temperatures (e.g., near the big bang), the laws of physics change so that the W+, W-, and Z particles act more like photons (zero mass).

    @Jim: You are 100% correct. I should change the wording. The two concepts are different, but they both rely on the same value of m.

    And my lack of (relative) excitement isn’t because the Higgs explains one concept vs. the other. It actually doesn’t explain either concept. What it does is it provides an explanation for where the rest mass of certain particles comes from.

    And to @Gareth’s point above, I AM excited by the Higgs. I just find some of the confusion and hype around the Higgs to be more confusing than helpful.

  16. Bill

    Woof!! After all this very nice explanation, Here I am a being,a collection of molecules,atoms and subatomic particles secured fairly firmly by gravity to a larger collection of molecules, trying desparately to understand itself.
    Thanks for the good words though, they help , really.

  17. Antuan

    fantastic easy to understand even for me :)
    so, Ron exists because of the Higgs fields, but no idea about the taste, colour and other kinds of properties, interesting

  18. google play

    Howdy, You’ve executed a great employment. Let me surely reddit it plus my propose for you to my girlfriends. I know they will be took advantage of your blog.

Leave a Reply